US009459819B2

a2 United States Patent

Belbin

(10) Patent No.:
45) Date of Patent:

US 9,459,819 B2
Oct. 4, 2016

(54)

(735)

(73)

")

@
(22)

(65)

(30)

Nov. 3, 2010

(1)

(52)

(58)

METHOD, APPARATUS AND SYSTEM FOR
ASSOCIATING AN INTERMEDIATE FILL
WITH A PLURALITY OF OBJECTS
Inventor: Joseph Leigh Belbin, Summer Hill
(AU)

Assignee: CANON KABUSHIKI KAISHA,
Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 313 days.

Appl. No.: 13/286,557

Filed: Nov. 1, 2011

Prior Publication Data

US 2012/0105911 Al May 3, 2012

Foreign Application Priority Data

[N) Y 2010-241218
Int. CI.
GO6K 15/02
GOGF 3/12
GO6T 15/50
GO6T 11/40

U.S. CL
CPC

(2006.01)
(2006.01)
(2011.01)
(2006.01)

GO6F 3/122 (2013.01); GO6F 3/1247
(2013.01); GOGF 3/1285 (2013.01); GO6T
11/40 (2013.01); GOGF 2206/1514 (2013.01)

Field of Classification Search

CPC GOGF 2206/1514; GOGF 3/122; GOGF
3/1247; GOGF 3/1285; GO6T 11/40
USPC i 345/629

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5398309 A * 3/1995 Atkinsetal ... 345/634
5,504,842 A * 4/1996 Gentile 358/1.15
5668931 A * 9/1997 Dermer 358/1.4
5,933,588 A * 8/1999 Easwaretal. ... 358/1.17
6,049,390 A * 4/2000 Notredame et al. 358/1.15
6,594,030 B1* 7/2003 Ahlstrom et al. .. . 358/1.15
7,023,439 B2* 4/2006 Martin et al. 345/428
7,317,543 B2 1/2008 Gnutzmann
7,333,115 B2* 2/2008 Yamaguchi 345/505
7,561,303 B2* 7/2009 Groarke et al. ... 358/1.9
7,839,533 B2* 11/2010 Nishide et al. 358/1.18
8,203,747 B2* 6/2012 Owen 358/1.8
8,218,200 B2* 7/2012 Yang et al. 358/1.9
2002/0027563 Al* 3/2002 Van Doan et al. . .. 345/630
2005/0206653 Al* 9/2005 Beaumont 345/629
(Continued)
FOREIGN PATENT DOCUMENTS
AU 2005203541 Al 3/2007
AU 2009202377 Al 1/2011
(Continued)

Primary Examiner — Sing-Wai Wu
(74) Attorney, Agent, or Firm — Canon USA, Inc. IP
Division

&

7)

ABSTRACT

A method of associating a shared fill with a plurality of
objects, is disclosed. Each of the objects is associated with
a fill. A bounding region of the shared fill is determined
based on a fill of a first of the plurality of objects. The first
object is associated with the shared fill. A second object is
received and the shared fill is updated based on a fill of the
second object if: (a) the fill of the second object is contained
within the bounding region; and (b) the fill of the second
object is non-overlapping with the fill of the first object. The
second object is associated with the updated intermediate
fill. The updated shared fill is shared by the first object and
the second object.

18 Claims, 21 Drawing Sheets

A

| Information

Fi

Compositing
{ Information

Tay

§ -

{

dn 420

-
ATOP

435 -

]

Digplay Listf i]
Objent 3Paati’w information
0 vm\ i a1 -
§
1 i
}
H
T
A28 ""“'\‘l i‘ﬂja -"\U
}
2 §
§
§
1
HEFIREN
445 "‘“\' § &
|
H
H

oveR |

!

f

!

!

i

i

!

! -
i

1 OVER
f

f

i

!

i

!

!

!

i

US 9,459,819 B2

Page 2
(56) References Cited 2010/0315431 Al* 12/2010 Smith et al. 345/619
2010/0328716 Al* 12/2010 MOIi ..coooovevvicniiiinnne 358/1.15
U.S. PATENT DOCUMENTS
2006/0103671 Al* 5/2006 Brown 345/629 FOREIGN PATENT DOCUMENTS
2006/0192983 Al 8/2006 Groarke et al.
2008/0121939 Al* 5/2008 Murray et al. 257/202 AU 2009212933 Al 3/2011
2008/0152260 Al 6/2008 Cheng et al. P 2004318832 A 11/2004
2009/0237734 Al* 9/2009 Owen 358/1.16 1P 2010238235 A 10/2010
2009/0303550 Al* 12/2009 Hirabayashi 358/448
2009/0324065 Al* 12/2009 Ishida et al. 382/164 * cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 21 US 9,459,819 B2

Printing
System

Ry

Y445

' '{Wi de-area)l
Computer

{t.ocal}

Network 4on Computer ,
"~ Netwaork 122
%
~
e 4273
\\5‘ {, 2 K
“\ i &
. 180 i
[Microphone]w,f»’ : & {3
| Poe 5
& -

{11
&
P
&
%
:t:s

:
: 47
108 f ;“fﬁ :3:3
e ; e R Ees:
SN
+ K kS : ; g
Audio-Video ¥ Local igsmgmm 3??’“3’:*%@ s 109
triterface interfaces 1 MNetb T Devices &
g ace 0
et 4034
- i § . ,“f’» ‘. -
#* 118 3 $M 119 ,t
e R . {}mimzai
Pracessor intertace Momary Disk ;;u
{rive %

. 105 H

3

s
gos
e

i
102 J} Keyboar | ;
' eyboand J K\ N ' e
- 113 _ Dk
126 71 Scanner / w108 | morsge | 145
3 I
127 &1 Camera i
o 103 . |
Fig. 1A

U.S. Patent

Oct. 4, 2016

Sheet 2 of 21

US 9,459,819 B2

L. 133

128

o 138

oo 36

vag LS ednation - pat 2|

i
§

} o
- 154

§ o

138
)

4

instruction

137

oo 180 e 181 - 18
4 & ¥
: Bouistoap

£3%

BIOS |

POST] |

fovader

CPERATING SYSTEM

148
164 ~ : o 3 o "
10 it variables Oustpul vanables S 181
155 .. =9
; et 16
156 . N
f"-f.‘.mw e 1@3
15T gt N .
; e 154
YES 4. d
S 168
159 ;) intarmediste varables
e i b b e
168 bt~ T 5
SR W | ¥4

$”’ 148

e
¥

hmface

b
L 142

i
{
H
i
H
i
H
3.

141

138

AL g

%

T uistizu]

ety

instruclion« {1

e

arithorelic

o -

.....

foro unit

U.S. Patent Oct. 4, 2016 Sheet 3 of 21 US 9,459,819 B2
compater moadule Py 4834
t;\'"'-s,, .u,./'“j
Host Processor -
—
, 105
3 e L
123 e
'\ﬁ\ ‘I“/l'.
l e
Software Applitation bad R 1+
182
{Local}
Corpuiter
Nebwark
g
Frinter
Tt
Pixel
Rendering
Apparatus
178
il ¥ L Lt
t 1886 t o1 :
'?zf:ﬁi‘l “‘--,“\“ - ?ﬁﬁ
S Controfling] Printer Englne
Processor Program s
Bamory

Fig. 1C

U.S. Patent Oct. 4, 2016 Sheet 4 of 21 US 9,459,819 B2

24340

Generate Display ;/ it
List

U.S. Patent Oct. 4, 2016 Sheet 5 of 21 US 9,459,819 B2

0~

US 9,459,819 B2

Sheet 6 of 21

Oct. 4, 2016

U.S. Patent

oy

574

e

AN

!
:
;
€
:
;

]]
| |
IO | |
| |
| |
| |
m m m
| | |
Nzl m
HIANO) |
e L e
LR cop | N oo S
§ H i
| | |
m | |
o | m
dOLV | | ol
» m | |
m m m A
uopeusom) | UORBULIOMLY [ooslgn
bugsodwon W4 | R OMEUR o e
}z{%

(r e
o5
s

Doy

U.S. Patent Oct. 4, 2016 Sheet 7 of 21 US 9,459,819 B2

(Btant :} ‘;’ [

;

& Iniliafise Stitching
Parameiors

520 TN
f,«&}@; there more PO ‘
e Oblects 10 add o e el { Stop :)
Disploy Ligt?

Wi :»j"’ T B30

Ciotain naxt PRL
Osfont

'

MNaw display bst
arviry is aliccsted

vl

Determning path
ghater froem PDRL
obiact

i “//—“‘ 545

Determing composiling
Oparator obtained from
PO Cibjedt

M,, ‘ V/ HEG

Diaterming
st CrprcBdate Fill from
POL Objegt

(631
faF
51

Apply stifching o
sandidule il

U.S. Patent

&G f}m\\'

G258 — "‘“»»‘;
ircr ereand
activation count

&30 ““\V

Oct. 4, 2016

811G

e

'\"ﬂaﬁg.&ab;& for atiiching -

BG,

AN
R
e .,

o s

u""‘ l""« i - . S
ST pRE e N ey sotivatiohe,
= Oombination \,M/ 2?%9}0&? busn
T actve? o, sseadiad o
\"\, - \‘\». k.»-‘/
e /"'k/ e

G485 "——\' 3‘%1

i

Disdaonioe axistivg
stitchar objsct sultable
for combinsgion with
candidete 88

Acibsaie Fil
Corhination

N
85 5%..&\%

Sheet 8 of 21

3»(oaruiidate f zﬁﬁ T,

- W

US 9,459,819 B2

v fss} iw &skisdaxiw
Fit

F 3

A

875 .,

Drsachivate Pl
Combinaiion

Yoy

. ~,

BT,
¥

.“/\‘

st ng st Cég;\\ Nes Iroramant M&c 6&&@?&»&&@&
o bt ?{};ﬁ S deativalinn s trrgsbold boan
o 34 b v \
e i e oot \fxt,ewieu‘?‘,f
e, o . ’./"'
/}\.,\\ /‘/«.» e, o -
ETE L - s
Cambine e
el viciiciat A with e o R

stifchar objeot

BEG

'

i

Bet DL Object's

stitcher object §i#

stisher abpaot

Fig. 6

U.S. Patent Oct. 4, 2016 Sheet 9 of 21 US 9,459,819 B2

710 "*

700 "‘\ found stificher i, Hiart 3
3 None)]

718 .4

- ”“"\,\:\
o More stitcheP . No

. o R o, 3‘*‘“ . Y
r—— abjects 1 ff,\wmwmw««mw& St &}
*»«,Rp FOUERS Y P i
'\“\-. - o 3

I S

e it

Ve l | {/”““ F25

Fotoch ned Sticher
Ohiect

o } ,\{, ~ 730

MNa ~Sitcher object and.,
WM\ candicate il .
T, tompatible? &,,f"’

T, . e

;

o (”‘ 735

- f’”ﬁtﬁm}e‘r object at”s:f ",

F— candidate 5 in T
No T promimity? 7

2 ,,\«% /Iw«»\m ? 4 {:}
T Sant

s Stitcher Olject and.._ No found_stitcher
Tepandidate B overap?.. o Stitcher
e, e N e
Object

Fig. 7

U.S. Patent Oct. 4, 2016 Sheet 10 of 21 US 9,459,819 B2

“ £
\; i 800

Determineg set of phsls in
stitcher obiect that
erepriap with pixels fom
candidate

B30 “«\
ol 2
} -~ \“"«.-
e -

By a&pmﬁ:&ﬁ@a&\\,\ Mo e
o RO PRNAINENG N e Stop i
; ~, ok . , e .

: ‘*\\\&a@.ﬁ_ of pixeds? 7 ~ g

ey o

Yoy | /’”""‘““” 850

Fatoh next
unprocessed pixet in
sed of pirals

l éwm 860
Dinteryning value of
Canglidate Fil dals
corresponding o

this pived

Loy deternminegd oolowe
value it stitcher obleot's
images il source bitmap
at the pixed location

l {ﬂ“‘”‘”‘“ 880

bark pixed in

TWRITTEN

US 9,459,819 B2

Sheet 11 of 21

Oct. 4, 2016

U.S. Patent

it o s
e
<

.
L

i

i

“ A

»

LA TR VT S O

yoar s

PR R O

<
PR

; K.nv.yv..

R

L R A A)

.

N

P L R EEEE

»

»
v
%

sv s g

- %
I I A

2

US 9,459,819 B2

Sheet 12 of 21

Oct. 4, 2016

U.S. Patent

fHid

01 b4

HAAD WO BunsudwnD

v el |

Tl Ul ppae

D0 e

i

H3AD 0 Bunsoduons

£ QUL BAST

fitd

L8 G AR

78 OR} I9ART

T3 O BagT

L D oA

&8 Ojup e

Z# O AT

L DR Ay

a0y do Bupsoduon

R St

saujue aousnbes
Bumsodwon |14

U.S. Patent Oct. 4, 2016 Sheet 13 of 21 US 9,459,819 B2

prs
s
s
fed

11440

US 9,459,819 B2

Sheet 14 of 21

Oct. 4, 2016

U.S. Patent

4 v . +

. v » -

. + » ¥

« - - «
R R R R R N T

+ > It *

» - . .

- v B -

« + + B

. . + v

+ . . -

+ » 1 +

i - > < -

B TR R
R Y R N R R

’ T el M « * ¥

- » < ¥

* > < ¢

* > « -

x «) -

. a . .
IR L AR B TN RTINS T RIS

v - s v

* » «

+ *

* -

. *

. -

v

4

+

-

P

PR
o
'~
B
<

p
tewvd s e e f

i

o
e <

-
g

A

o *
®
“
*
-
ot
~
o e
Py o
. -
KA e Wy
& "
»
*

oy

I3

i

H

%

e
e,

-
“

7

US 9,459,819 B2

Sheet 15 of 21

Oct. 4, 2016

U.S. Patent

Hid

¢l b4

HIAO o Bunsoduion

£ U} [9487]

T,

#d

HAAD hy Bugsoduwos

73 O 9AET

D f{\m

£8 D 1BKE

24 G peae

AUON

L4 DiL [9ARY

Li Ot BaE)

el et

Bunisodwoo i

Xapu|

*/fim»mw

U.S. Patent Oct. 4, 2016 Sheet 16 of 21 US 9,459,819 B2

1440 *‘\\v 1420)““\,*

image Dala Pixels marked as Dirty

image Data Pixels marked as Dirly

mnn e .

Fig. 14B

US 9,459,819 B2

Sheet 17 of 21

Oct. 4, 2016

U.S. Patent

s QPG

[EVV IV VIV S S VPV R Y VRV US O s

¥ano | 9

N 0851

i

m

|

H4A0
L v

D uonewsopy yieg

G151
LORBULIOH] | UORBULIONY
Bunisodwos; fitd

k]

w
i
m
|
M
m
-
i
W
w
m

walg)

1
|
|
|
|
W
|
m
|
|
|
|
|
|
|
M
|
|
| ,
m psry Aeidsig

US 9,459,819 B2

Sheet 18 of 21

Oct. 4, 2016

U.S. Patent

i

G491

91 "Bid

i/

%\N&m&&w&%@@

\ A.ff
A;..//f%v S

«\V\\A\\A\\\V\

[TR

>

I

D I O SR AL I S Y
S

US 9,459,819 B2

Sheet 19 of 21

Oct. 4, 2016

U.S. Patent

Ll "bid

Hid

< 1

2

4 HIAQ 90 Bumsodwo)

PR
5851

28 Ol 19497

T,

Zi G} @A

AU

L# Ojuf [2ABT

\+ HIAD A0 Bupsodwon

L3 O] 19AD7

Buisodwon 14

Xopuj

.//& 0L}

U.S. Patent Oct. 4, 2016 Sheet 20 of 21 US 9,459,819 B2

1800 »\ { Start)
//M 1801

Detenmine bounding
raxgiony of intermediate
fill

1803

Aazociate object
wath indermadiate B

T 805
¥

Raveive a seodrd
et

l | ‘/ﬂ- 1807

Lipdate rgdermediale
?z‘i' :ﬁegmﬁé’im on i

i /“ 1800

Aszooiste seoond
objeat with
intermedints fi

Fig. 18

a‘*—.’ ’ N"‘v
! Eng 3
. o

U.S. Patent Oct. 4, 2016 Sheet 21 of 21 US 9,459,819 B2

1820

1930 >

mwmmmmwmmwmwmm
o s e o o e e e

Fig. 19B

US 9,459,819 B2

1

METHOD, APPARATUS AND SYSTEM FOR
ASSOCIATING AN INTERMEDIATE FILL
WITH A PLURALITY OF OBJECTS

FIELD OF INVENTION

The present invention relates generally to image process-
ing and, in particular, to a method and apparatus reducing the
memory usage of complex display lists. The present inven-
tion also relates to a computer program product including a
computer readable medium having recorded thereon a com-
puter program for associating an intermediate fill with a
plurality of objects.

DESCRIPTION OF BACKGROUND ART

A print job, which may consist of one or more pages and
which is to be printed on a printer, is typically sent to the
printer in a form utilizing a page description language
(PDL), such as PostScript™ or PDF of Adobe™, or PCL of
HP™. In a typical page description language printer, the
page description input is translated into high-level graphics
objects. Each graphics object generally consists of a number
of graphics primitives each typically comprising path data
which indicates where the object is active on the page, fill
data which indicates the colour of the object, and compos-
iting data which indicates how the object will interact with
any objects below. The graphics primitives are stored in an
intermediate format known as a display list. A completed
display list is then sent to a renderer for rendering to a page
of pixel data destined for a printer engine.

Common types of fills are flat colours, bitmaps, and linear
and radial shadings. A bitmap fill generally consists of
source bitmap data, which is specified in a source coordinate
system, and an affine transformation, which maps between
the source coordinate system and the output page coordinate
system.

A job may potentially contain a very large number of
graphics objects, each referencing a path and an individual
bitmap fill. In this case, the memory required to store the
display list could be a significant fraction of the total job
memory. Since memory represents a substantial cost, it is
desirable to reduce the memory used by the display list
without significantly decreasing the rendered page quality.

One known method for reducing the display list memory
is to convert the display list into an intermediate format
known as a fillmap. A fillmap consists of non-overlapping
regions. Each region references a sequence of one or more
fills, which are derived from the objects which are active in
the given region. Neighbouring regions can be combined if
the regions reference the same sequence of fills. In general,
the memory required to store the intermediate format is
related to the number of regions. However, if there are a
large number of display list objects with a large number of
individual fills, it is likely that there will be a large number
of regions in the intermediate format. By converting the
display list to a fillmap intermediate format, the memory
required to store the path data for each object can be freed.
However, the memory required to store the fill data may
remain high.

A method of reducing the memory required for bitmap
fills associated with a number of images is to combine the
fills by rendering the fills into a consolidated image. Ren-
dering the images involves compositing operations to be
performed. In order to render objects which are transparent
or which are composited with underlying objects, the under-
lying objects must also be rendered. This means that in the

20

40

45

55

60

2

worst case, the entire display list must be rendered, and this
processing is expensive both computationally and in
memory usage.

Thus, a need exists to reduce the amount of memory used
by the intermediate format.

SUMMARY OF THE INVENTION

It is an object of the present invention to substantially
overcome, or at least ameliorate, one or more disadvantages
of existing arrangements.

According to one aspect of the present disclosure there is
provided a method of associating a shared fill with a
plurality of objects, each of said objects being associated
with a fill, said method comprising:

determining a bounding region of the shared fill based on
a fill of a first of the plurality of objects;

associating the first object with the shared fill;

receiving a second object;

updating the shared fill based on a fill of the second object
if: (a) the fill of the second object is contained within the
bounding region; and (b) the fill of the second object is
non-overlapping with the fill of the first object;

associating the second object with the updated shared fill,
said updated shared fill being shared by the first object and
the second object; and

rendering the first object and the second object using the
updated shared fill.

According to another aspect of the present disclosure
there is provided a method of associating a shared fill with
a plurality of objects, each of said objects being associated
with a fill, said method comprising:

associating the first object with the shared fill;

receiving a second object;

updating the shared fill based on a fill of the second object

if:

(a) the fill of the second object is within a predeter-
mined distance of the fill of the first object;

(b) the fill of the second object is non-overlapping with
the fill of the first object; and

associating the second object with the updated shared fill,

said updated shared fill being shared by the first object
and the second object; and

rendering the first object and the second object using the

updated shared fill.

According to still another aspect of the present disclosure,
there is provided a system for associating a shared fill with
a plurality of objects, each of said objects being associated
with a fill, said system comprising:

a memory for storing data and a computer program;

a processor for executing said computer program, said
computer program comprising instructions for:

determining a bounding region of the shared fill based on

a fill of a first of the plurality of objects;

associating the first object with the shared fill;

receiving a second object;
updating the shared fill based on a fill of the second object
if: (a) the fill of the second object is contained within
the bounding region; and (b) the fill of the second
object is non-overlapping with the fill of the first object;

associating the second object with the updated shared fill,
said updated shared fill being shared by the first object
and the second object, and

a printer receiving the updated shared fill to render the
first and the second objects using the updated shared fill.

According to still another aspect of the present disclosure
there is provided a system for associating a shared fill with

US 9,459,819 B2

3

a plurality of objects, each of said objects being associated
with a fill, said system comprising:

a memory for storing data and a computer program;

a processor for executing said computer program, said
computer program comprising instructions for:

associating the first object with the shared fill;

receiving a second object;

updating the shared fill based on a fill of the second object

if:

(a) the fill of the second object is within a predeter-
mined distance of the fill of the first object; and
(b) the fill of the second object is non-overlapping with

the fill of the first object; and

associating the second object with the updated shared fill,

said updated shared fill being shared by the first object
and the second object, and

a printer receiving the updated shared fill to render the
first and the second objects using the updated shared fill.

According to still another aspect of the present disclosure
there is provided an apparatus for associating an intermedi-
ate fill with a plurality of objects, each of said objects being
associated with a fill, said apparatus comprising:

means for determining a bounding region of the interme-
diate fill based on a fill of a first of the plurality of objects;

means for associating the first object with the intermediate
fill;

means for receiving a second object;

means for updating the intermediate fill based on a fill of
the second object if: (a) the fill of the second object is
contained within the bounding region; and (b) the fill of the
second object is non-overlapping with the fill of the first
object; and

means for associating the second object with the updated
intermediate fill.

According to still another aspect of the present disclosure
there is provided an apparatus for associating a shared fill
with a plurality of objects, each of said objects being
associated with a fill, said apparatus comprising:

means for associating the first object with the shared fill;

means for receiving a second object;

means for updating the shared fill based on a fill of the
second object if:

(a) the fill of the second object is within a predetermined

distance of the fill of the first object; and

(b) the fill of the second object is non-overlapping with

the fill of the first object;

means for associating the second object with the updated
shared fill, said updated shared fill being shared by the first
object and the second object; and

means for rendering the first object and the second object
using the updated shared fill.

According to still another aspect of the present disclosure
there is provided a computer readable medium having
recorded therein a computer program for associating a
shared fill with a plurality of objects, each of said objects
being associated with a fill, said computer program com-
prising computer code means for:

determining a bounding region of the shared fill based on
a fill of a first of the plurality of objects;

associating the first object with the shared fill;

receiving a second object;

updating the shared fill based on a fill of the second object
if: (a) the fill of the second object is contained within the
bounding region; and (b) the fill of the second object is
non-overlapping with the fill of the first object;

10

15

20

25

35

40

45

50

55

60

65

4

associating the second object with the updated shared fill,
said updated shared fill being shared by the first object and
the second object; and

rendering the first object and the second object using the
updated shared fill.

According to still another aspect of the present disclosure
there is provided a computer readable medium having
recorded therein a computer program for associating a
shared fill with a plurality of objects, each of said objects
being associated with a fill, said computer program com-
prising computer code means for:

associating the first object with the shared fill;

receiving a second object;

updating the shared fill based on a fill of the second object
if:

(a) the fill of the second object is within a predetermined

distance of the fill of the first object;

(b) the fill of the second object is non-overlapping with

the fill of the first object; and

associating the second object with the updated shared fill,

said updated shared fill being shared by the first object
and the second object; and

rendering the first object and the second object using the
updated shared fill.

According to still another aspect of the present disclosure
there is provided a method of creating shared fill information
for a plurality of objects in a display list, said method
comprising:

receiving a first object having first fill information;

receiving a second object, said second object having
second fill information, wherein said second fill information
is non-overlapping with the first fill information;

updating said first fill information based on the second fill
information in the event that the first fill information is
non-overlapping with the second fill information;

associating the second object with the updated fill infor-
mation to create shared fill information for the first object
and the second object; and

rendering the first and the second object using the updated
shared fill information.

Other aspects of the invention are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the invention will now be
described with reference to the following drawings, in
which:

FIGS. 1a to 1c¢ collectively form a schematic block
diagram of a pixel rendering system, upon which arrange-
ments described may be practiced;

FIG. 2 is a schematic flow diagram showing a method of
generating an intermediate page representation;

FIG. 3 shows an exemplary page;

FIG. 4 shows a display list intermediate page represen-
tation for the exemplary page of FIG. 3;

FIG. 5 is a schematic flow diagram showing a method of
generating a display list intermediate page representation of
a page description language (PDL) page;

FIG. 6 is a schematic flow diagram showing a method of
applying stitching to the candidate fill, as executed in the
method of FIG. 5;

FIG. 7 is a schematic flow diagram showing a method of
determining a stitcher object that is suitable for combination
with the candidate fill;

FIG. 8 is a schematic flow diagram showing a method of
combining a candidate fill with a stitcher object, as executed
in the method of FIG. 3;

US 9,459,819 B2

5

FIG. 9 shows a tiled fillmap intermediate representation
for the page shown in FIG. 3;

FIG. 10 shows a table of fill compositing sequences and
corresponding level information for the tiled fillmap inter-
mediate representation shown in FIG. 9;

FIG. 11 shows an example PDL page;

FIG. 12 shows a tiled fillmap intermediate representation
for the page shown in FIG. 11;

FIG. 13 shows the table of fill compositing sequences and
corresponding level information for the tiled fillmap inter-
mediate representation shown in FIG. 12;

FIG. 14A shows the state of a stitcher object during
processing of the page of FIG. 11 in accordance with the
method of FIG. 5;

FIG. 14B shows the updated state of a stitcher object
during the processing of the page shown in FIG. 11;

FIG. 15 shows a display list intermediate page represen-
tation for the page shown in FIG. 11;

FIG. 16 shows another tiled fillmap intermediate repre-
sentation for the page shown in FIG. 11;

FIG. 17 shows the table of fill compositing sequences and
corresponding level information for the tiled fillmap inter-
mediate representation shown in FIG. 16;

FIG. 18 is a flow diagram showing a method of associ-
ating an intermediate fill with a plurality of objects, each of
the objects being associated with a fill; and

FIG. 19A and FIG. 19B show an example where the
bounding box of the stitcher object and the candidate fill do
not overlap.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

Where reference is made in any one or more of the
accompanying drawings to steps and/or features, which have
the same reference numerals, those steps and/or features
have for the purposes of this description the same func-
tion(s) or operation(s), unless the contrary intention appears.

FIGS. 1A to 1C collectively form a schematic block
diagram of a pixel rendering system 100, upon which the
various arrangements described can be practiced.

As seen in FIG. 1A, the system 100 is formed by a
computer module 101, input devices such as a keyboard 102,
a mouse pointer device 103, a scanner 126, a camera 127,
and a microphone 180, and output devices including a
printer 115, a display device 114 and loudspeakers 117. An
external Modulator-Demodulator (Modem) transceiver
device 116 may be used by the computer module 101 for
communicating to and from a communications network 120
via a connection 121. The network 120 may be a wide-area
network (WAN), such as the Internet or a private WAN.
Where the connection 121 is a telephone line, the modem
116 may be a traditional “dial-up” modem. Alternatively,
where the connection 121 is a high capacity (e.g., cable)
connection, the modem 116 may be a broadband modem. A
wireless modem may also be used for wireless connection to
the network 120.

The computer module 101 typically includes at least one
processor unit 105, and a memory unit 106 for example
formed from semiconductor random access memory (RAM)
and semiconductor read only memory (ROM). The module
101 also includes a number of input/output (I/O) interfaces
including an audio-video interface 107 that couples to the
video display 114, loudspeakers 117 and microphone 199, an
1/0 interface 113 for the keyboard 102, mouse 103, scanner
126, camera 127 and optionally a joystick (not illustrated),
and an interface 108 for the external modem 116. In some

20

25

30

40

45

55

6

implementations, the modem 116 may be incorporated
within the computer module 101, for example within the
interface 108. The computer module 101 also has a local
network interface 111 which, via a connection 123, permits
coupling of the pixel rendering system 100 to a local
computer network 122, known as a Local Area Network
(LAN). As also illustrated, the local network 122 may also
couple to the wide network 120 via a connection 124, which
would typically include a so-called “firewall” device or
device of similar functionality. The interface 111 may be
formed by an Ethernet™ circuit card, a Bluetooth™ wireless
arrangement or an IEEE 802.11 wireless arrangement.

The interfaces 108 and 113 may afford either or both of
serial and parallel connectivity, the former typically being
implemented according to the Universal Serial Bus (USB)
standards and having corresponding USB connectors (not
illustrated). Storage devices 109 are provided and typically
include a hard disk drive (HDD) 110. Other storage devices
such as a floppy disk drive and a magnetic tape drive (not
illustrated) may also be used. An optical disk drive 112 is
typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (e.g., CD-
ROM, DVD), USB-RAM, and floppy disks for example
may then be used as appropriate sources of data to the
system 100.

The components 105 to 113 of the computer module 101
typically communicate via an interconnected bus 104.
Examples of computers on which the described arrange-
ments can be practiced include IBM-PC’s and compatibles,
Sun Sparcstations, Apple Mac™ or alike computer systems
evolved therefrom.

Methods described below may be implemented using the
system 100 wherein the processes of FIGS. 2 to 16B, to be
described, may be implemented as one or more software
application programs 133 and/or the controlling program
190 (see FIG. 1C) executable within the system 100. In
particular, the steps of the described methods are effected by
instructions 131 in the software that are carried out within
the system 100. The software instructions 131 may be
formed as one or more software code modules, each for
performing one or more particular tasks. The software may
also be divided into two separate parts, in which a first part
and the corresponding software code modules performs the
described methods and a second part and the corresponding
software code modules manages user interface between the
first part and the user.

The software may be stored in a computer readable
medium, including the storage devices described below, for
example. The software is loaded into the system 100 from
the computer readable medium, and then executed by the
system 100. A computer readable medium having such
software or computer program recorded on it is a computer
program product. The use of the computer program product
in the system 100 preferably effects an advantageous appa-
ratus for implementing the described methods.

The software 133 is typically stored in the HDD 110 or the
memory 106. The software 133 is loaded into the system 100
from a computer readable medium, and then executed by the
system 100. Thus for example the software may be stored on
an optically readable CD-ROM medium 125 that is read by
the optical disk drive 112. A computer readable medium
having such software or computer program recorded on it is
a computer program product. The use of the computer
program product in the computer system 100 preferably
effects an advantageous apparatus for implementing the
described methods.

US 9,459,819 B2

7

In some instances, the application programs 133 may be
supplied to the user encoded on one or more CD-ROM 125
and read via the corresponding drive 112, or alternatively
may be read by the user from the networks 120 or 122. Still
further, the software can also be loaded into the system 100
from other computer readable media. Computer readable
storage media refers to any storage medium that participates
in providing instructions and/or data to the system 100 for
execution and/or processing. Examples of such storage
media include floppy disks, magnetic tape, CD-ROM, a hard
disk drive, a ROM or integrated circuit, USB memory, a
magneto-optical disk, or a computer readable card such as a
PCMCIA card and the like, whether or not such devices are
internal or external of the computer module 101. Examples
of computer readable transmission media that may also
participate in the provision of software, application pro-
grams, instructions and/or data to the computer module 101
include radio or infra-red transmission channels as well as a
network connection to another computer or networked
device, and the Internet or Intranets including e-mail trans-
missions and information recorded on Websites and the like.

The second part of the application programs 133 and the
corresponding code modules mentioned above may be
executed to implement one or more graphical user interfaces
(GUIs) to be rendered or otherwise represented upon the
display 114. Through manipulation of typically the keyboard
102 and the mouse 103, a user of the system 100 and the
application may manipulate the interface in a functionally
adaptable manner to provide controlling commands and/or
input to the applications associated with the GUI(s). Other
forms of functionally adaptable user interfaces may also be
implemented, such as an audio interface utilizing speech
prompts output via the loudspeakers 117 and user voice
commands input via the microphone 180.

FIG. 1B is a detailed schematic block diagram of the
processor 105 and a “memory” 134. The memory 134
represents a logical aggregation of all the memory modules
(including the HDD 109 and semiconductor memory 106)
that can be accessed by the computer module 101 in FIG.
1A.

When the computer module 101 is initially powered up,
a power-on self-test (POST) program 150 executes. The
POST program 150 is typically stored in a ROM 149 of the
semiconductor memory 106. A hardware device such as the
ROM 149 is sometimes referred to as firmware. The POST
program 150 examines hardware within the computer mod-
ule 101 to ensure proper functioning, and typically checks
the processor 105, the memory (109, 106), and a basic
input-output systems software (BIOS) module 151, also
typically stored in the ROM 149, for correct operation. Once
the POST program 150 has run successfully, the BIOS 151
activates the hard disk drive 110. Activation of the hard disk
drive 110 causes a bootstrap loader program 152 that is
resident on the hard disk drive 110 to execute via the
processor 105. This loads an operating system 153 into the
RAM memory 106 upon which the operating system 153
commences operation. The operating system 153 is a system
level application, executable by the processor 105, to fulfil
various high level functions, including processor manage-
ment, memory management, device management, storage
management, software application interface, and generic
user interface.

The operating system 153 manages the memory (109,
106) in order to ensure that each process or application
running on the computer module 101 has sufficient memory
in which to execute without colliding with memory allocated
to another process. Furthermore, the different types of

25

40

45

50

55

8

memory available in the system 100 must be used properly
so that each process can run effectively. Accordingly, the
aggregated memory 134 is not intended to illustrate how
particular segments of memory are allocated (unless other-
wise stated), but rather to provide a general view of the
memory accessible by the system 100 and how such is used.

The processor 105 includes a number of functional mod-
ules including a control unit 139, an arithmetic logic unit
(ALU) 140, and a local or internal memory 148, sometimes
called a cache memory. The cache memory 148 typically
includes a number of storage registers 144 - 146 in a register
section which may store instruction 143 and data 147. One
or more internal busses 141 functionally interconnect these
functional modules. The processor 105 typically also has
one or more interfaces 142 for communicating with external
devices via the system bus 104, using a connection 118, or
with the application program 133 via a connection 119.

The application program 133 includes a sequence of
instructions 131 that may include conditional branch and
loop instructions. The program 133 may also include data
132 which is used in execution of the program 133. The
instructions 131 and the data 132 are stored in memory
locations 128-, 129, and 130 and 135-, 136, and 137 respec-
tively. Depending upon the relative size of the instructions
131 and the memory locations 128-130, a particular instruc-
tion may be stored in a single memory location as depicted
by the instruction shown in the memory location 130.
Alternately, an instruction may be segmented into a number
of parts each of which is stored in a separate memory
location, as depicted by the instruction segments shown in
the memory locations 128-129.

In general, the processor 105 is given a set of instructions
which are executed therein. The processor 105 then waits for
a subsequent input, to which the processor 105 reacts to by
executing another set of instructions. Each input may be
provided from one or more of a number of sources, includ-
ing data generated by one or more of the input devices 102,
103, data received from an external source across one of the
networks 120, 102, data retrieved from one of the storage
devices 106, 109 or data retrieved from a storage medium
125 inserted into the corresponding reader 112. The execu-
tion of a set of the instructions may in some cases result in
output of data. Execution may also involve storing data or
variables to the memory 134.

The described methods use input variables 154 that are
stored in the memory 134 in corresponding memory loca-
tions 155-158. The described methods produce output vari-
ables 161 that are stored in the memory 134 in correspond-
ing memory locations 162-165. Intermediate variables may
be stored in memory locations 159, 160, 166 and 167.

The register section 144-146, the arithmetic logic unit
(ALU) 140, and the control unit 139 of the processor 105
work together to perform sequences of micro-operations
needed to perform “fetch, decode, and execute” cycles for
every instruction in the instruction set making up the pro-
gram 133. Each fetch, decode, and execute cycle comprises:

(a) a fetch operation, which fetches or reads an instruction
131 from a memory location 128;

(b) a decode operation in which the control unit 139
determines which instruction has been fetched; and

(c) an execute operation in which the control unit 139
and/or the ALU 140 execute the instruction.

Thereafter, a further fetch, decode, and execute cycle for
the next instruction may be executed. Similarly, a store cycle
may be performed by which the control unit 139 stores or
writes a value to a memory location 132.

US 9,459,819 B2

9

Each step or sub-process in the processes of FIGS. 4 to 6
is associated with one or more segments of the program 133,
and is performed by the register section 144-147, the ALU
140, and the control unit 139 in the processor 105 working
together to perform the fetch, decode, and execute cycles for
every instruction in the instruction set for the noted seg-
ments of the program 133.

The described methods may alternatively be implemented
in dedicated hardware such as one or more integrated
circuits performing the functions or sub functions of the
methods. Such dedicated hardware may include graphic
processors, digital signal processors, or one or more micro-
processors and associated memories.

FIG. 1C shows the computer module 101 connected to the
printer 115 via the network 122.

The printer 115 comprises a controller processor 185 for
executing a controlling program 190 resident in memory 180
in a similar manner to the software application 133. The
printer 115 also comprises a pixel rendering apparatus 196
and a printer engine 195. The components 180, 185, 195 and
196 are coupled via a communications bus 178.

The pixel rendering apparatus 196 may be in the form of
an ASIC coupled via the bus 178 to the processor 185 and
the printer engine 195. However, the pixel rendering appa-
ratus 196 may also be implemented in software executed by
the processor 185. In the pixel rendering system 100, the
software application 133, under execution of the processor
105, creates page-based documents where each page con-
tains objects such as text, lines, fill regions, and image data.
The software application 133 sends a high level description
of the page (e.g., as a page description language (PDL) file)
to the controlling program 190 being executed by the
controller processor 185 of the printer 115, via the network
122.

The controlling program 190 receives the description of
the page from the software application 133 and may store the
description in memory 180. Objects in the page description
are placed into a first intermediate format page representa-
tion called a display list, described in further detail below,
configured within the memory 180. Each object in the
display list references fill data, path data and compositing
instructions. The controlling program 190 processes the
page description objects to determine if any fills may be
combined into an intermediate fill. The controlling program
190 creates any required intermediate fills, or shared fills to
be shared by at least two objects.

The display list is used by the controlling program 190 to
generate a second intermediate format page representation
comprising a fillmap and a table of fill compositing
sequences, described in more detail below. Again, the sec-
ond intermediate format page representation comprising the
fillmap and the table of fill compositing sequences is stored
in the memory 180.

The controlling program 190 then processes the table of
fill compositing sequences to generate a table of fill com-
positing sequences and stores the table of fill compositing
sequences in the memory 180 which require only simple
rendering operations. The program 190 executing on the
controller processor 185 is also responsible for providing
memory 180 for the pixel rendering apparatus 196, initial-
izing the pixel rendering apparatus 196, and instructing the
pixel rendering apparatus 196 to start rendering the page.

The pixel rendering apparatus 196 then uses the fillmap
and table of fill compositing sequences to render the page to
pixels. The output of the pixel rendering apparatus 196 is
pixel data. The pixel data may be used by the printer engine
195 to print the page.

15

25

40

45

50

10

FIG. 2 is a schematic flow block diagram showing a
method 200 of generating an intermediate page representa-
tion. The method 200 may be implemented as one or more
code modules of the controlling program 190 resident in the
memory 180 and being controlled in its execution by the
processor 185. The method 200 generates a fillmap and table
of fill compositing sequences from the page description
provided by the software application 133.

The method 200 begins at step 201 where the controlling
program 190, under execution of the processor 185, gener-
ates a display list. As represented in FIG. 2, the controlling
program 190 receives a page description 240 and generates
a first intermediate format page representation 250 in the
form of a display list. The display list intermediate page
representation 250 may be stored in the memory 180. A
method 500 of generating a display list intermediate page
representation, as executed at step 201, will be described in
detail below with reference to FIG. 5.

The method 200 continues at the next step 203, where the
controlling program 190, under execution of the processor
105, processes the display list intermediate page represen-
tation 250 and produces a second intermediate format page
representation 260 in the form of a fillmap and table of fill
compositing sequences. Again, the fillmap and table of fill
compositing sequences representation 260 may be stored in
the memory 180.

The fillmap and the table of fill compositing sequences
representation 260 may be used by the pixel rendering
apparatus 196 for rendering to pixels. In order to minimise
the memory usage of the second intermediate format page
representation 260, fill combination may be performed dur-
ing the generation of the display list. The objective of fill
combination is to replace multiple fills, each having a
separate affine transformation mapping from source coordi-
nate system to the page coordinate system, with a single fill
having a single affine transformation mapping from source
coordinate system to the page coordinate system.

FIG. 3 shows an exemplary page 310 comprising a bottom
layer object 320 in the form of an opaque diamond, a second
from bottom layer object 330 in the form of an opaque
bitmap, and a top layer object 340 in the form of semi-
transparent flat rectangle 340.

FIG. 4 shows the display list 400 for the example page
310. Each entry (e.g., 405) in the display list 400 references
path information, fill information and compositing informa-
tion. Fill information is data associated with the path infor-
mation which specifies colour and opacity inside a path. On
the other hand, compositing information associated with the
path information is an indication of operation used to
combine the colour and opacity of an object generated by the
path information with the colour and opacity of a back-
ground object. As seen in FIG. 4, Display List Object Entry
“1” 405 corresponds to the opaque diamond object 320, and
references a diamond shape path 410, a linear blend fill 415
and an ATOP compositing operator 420. “Display List
Object Entry “2” 425 corresponds to the bitmap object 330,
and references a square path 430, a bitmap fill 435 and an
OVER compositing operator 440. Display List Object Entry
“3” 445 corresponds to the semi-transparent flat rectangle
340 and references a rectangular path 450, a semi-transpar-
ent flat colour fill 455 and an OVER compositing operator
460.

The method 500 of generating a display list intermediate
page representation, as executed at step 201, will be
described in detail below with reference to FIG. 5. The
method 500 may be implemented as one or more software
code modules of the controlling program 190 resident in the

US 9,459,819 B2

11

memory 180 and being controlled in its execution by the
processor 185. The intermediate page representation is gen-
erated from a page description language page (PDL) page
comprising one or more objects, such as the page 310. The
PDL page may be stored in the memory 180.

The method 500 begins at initialization step 515, where
the controlling program 190, under execution of the proces-
sor 185, initializes stitching parameters stored within
memory 180. The stitching parameters used in the method
500 are a “list of active stitcher objects”, a “fill combination
active flag”, an “activation count” and a “deactivation
count”.

The activation count counts the number of objects that
have been processed and that are suitable for stitching. The
activation count is used to determine if the activation
threshold has been reached. If the activation threshold is
reached, fill combination is activated.

The deactivation count records how many times fill
combination failed to combine a suitable fill. The deactiva-
tion count is used to determine if the deactivation threshold
has been reached. If the deactivation threshold is reached,
fill combination is deactivated.

In one implementation, at initializing step 515, the pro-
cessor 185 sets the fill combination active flag to TRUE, the
list of active stitcher objects to none/empty, and the activa-
tion count and the deactivation count to zero (0).

At determining step 520, if the controlling program 190
determines that there are remaining objects in the PDL page
which need to be processed and added to the display list,
then the method 500 proceeds to step 530. Otherwise, if
there are no further PDL objects to process, then the method
500 concludes.

At fetching step 530, the PDL object to be processed is
obtained from memory 180. The method 500 then proceeds
to display list entry step 535, where a new display list entry
is allocated and added to a display list configured within the
memory 180. Processing then moves to path data step 540,
where the controlling program 190 determines path data
from the PDL object. The path data is added to the new
display list entry of the display list configured within the
memory 180.

The method 500 then moves to compositing operator step
545, where the compositing operator is determined from the
PDL object by the controlling program 190 and is added to
the new display list entry within the display list. The fill
information of a PDL object is referred below to as the fill
of the PDL object. The method 500 then proceeds to step
550, where the fill of the PDL object is obtained and stored
as a temporary fill called a “candidate fill” within the
memory 190. Processing then moves to the candidate fill
stitching step 555. At stitching step 555, the controlling
program 190, under execution of the processor 185, applies
stitching to the candidate fill and sets the fill property of the
new display list entry corresponding to the PDL object
currently being processed. A method 600 of applying stitch-
ing to the candidate fill, as executed at step 555, will now be
described with reference to FIG. 6.

The method 600 may be implemented as one or more
software code modules of the controlling program 190
resident in the memory 180 and being controlled in its
execution by the processor 185.

The method 600 begins at determining step 610, where if
the controlling program 190, under execution of the proces-
sor 185, determines that the candidate fill is suitable for
stitching based on a set of criteria, then the method 600
proceeds to incrementing step 625. Otherwise, the method
600 proceeds to setting step 615. The set of criteria may be

35

40

45

12

pre-determined. In one implementation, the set of criteria
may include that a fill is suitable for stitching if the fill is a
bitmap fill, if the dimensions of the source bitmap are less
than a first predetermined size and if the dimensions of the
transformed source bitmap are less than a second predeter-
mined size.

At setting step 615, the fill for the currently processed
object is set to the candidate fill and the method 600
concludes.

At incrementing step 625, the stitching activation count
parameter configured within memory 180 is incremented by
the controlling program 190. At checking step 630, if the
controlling program 190 determines that the fill combination
active flag has been set then the method 600 proceeds to
compatible stitcher object step 645. Otherwise, the method
600 proceeds to determining step 635.

At step 645, the controlling program 190 attempts to
determine a stitcher object in the list of active stitcher
objects that are suitable for combination with the candidate
fill. A method 700 of determining a stitcher object in the list
of active stitcher objects that is suitable for combination
with the candidate fill, as executed at step 645, will be
described in further detail below with reference to FIG. 7.

At determining step 635, if a predetermined activation
threshold has been exceeded, then the method 600 proceeds
to step 640. Otherwise, the method 600 proceeds to step 615.
The activation threshold may be a simple threshold, for
example, that the activation count is greater than a prede-
termined value. Alternatively, the activation threshold may
be a more complex threshold, for example that the ratio of
the activation count to the total number of objects processed
is greater than a predetermined value.

At activating step 640, the controlling program 190, under
execution of the processor 185, sets the fill combination
active flag configured within memory 180.

At determining step 650, if the controlling program 190
determines that a suitable existing stitcher object was deter-
mined in step 645, then the method 600 proceeds to step
combining step 655. Otherwise, the method 600 proceeds to
incrementing step 665.

In one implementation, a Found_Stitcher variable may be
configured within memory 180. In this instance, the con-
trolling program 190 may determine that a suitable Stitcher
Object was found if the Found_Stitcher variable is not
“None”.

At combining step 655, the candidate fill is combined with
the stitcher object determined to be suitable at step 645. A
method 800 of combining a candidate fill with a stitcher
object, will be described in further detail below with refer-
ence to FIG. 8. Once the candidate fill has been combined
with the stitcher object, the method 600 concludes.

If controlling program 190 determines in step 650 that
there is no existing stitcher object in the list of active stitcher
objects that is suitable for combination with the candidate
fill, processing moves from step 650 to incrementing step
665. At step 665, the controlling program 190, under execu-
tion of the processor 185, increments the deactivation count
parameter configured within memory 180. Processing then
moves from step 665 to step 670, where if the controlling
program 190, under execution of the processor 185, deter-
mines that the deactivation threshold has been exceeded,
then the method 600 proceeds to deactivation step 675.
Otherwise, the method 600 proceeds to step creation step
680. In one implementation, the deactivation threshold is
determined to be exceeded if the ratio of the value of the

US 9,459,819 B2

13

deactivation count parameter to the value of the activation
count parameter configured in memory 180 is greater than a
predetermined value.

At step 675, the fill combination is deactivated. In par-
ticular, at step 675, the fill combination active flag config-
ured within memory 180 is cleared by the controlling
program 190. Further, the activation count and the deacti-
vation count parameters are set to zero (0). Processing then
moves to step 615, as described above.

Alternatively, as described above, if the deactivation
threshold has not been exceeded, processing moves from
step 670 to creating step 680, where the controlling program
190 creates a new stitcher object. A stitcher object comprises
a reference to a bitmap fill, data indicating which pixels have
been written to, and a bounding box indicating the active
area of the stitcher object. When the stitcher object is
created, in one implementation, a bounding box is created
with pre-determined x and y dimensions, a bitmap is ini-
tialized to transparent white pixels, and all pixels are marked
as ‘NOT WRITTEN’. Once the new stitcher object has been
created, the method 600 moves to combining step 655. At
combining step 655, the candidate fill is combined with the
stitcher object, and then on to setting step 660. At setting
step 660, the fill for the currently processed object is set to
the bitmap fill referenced by the stitcher object, and the
method 600 concludes.

The method 700 of determining a stitcher object in the list
of active stitcher objects that is suitable for combination
with the candidate fill, as executed at step 645, will now be
described in detail with reference to FIG. 7. The method 700
may be implemented as one or more software code modules
of the controlling program 190 resident in the memory 180
and being controlled in its execution by the processor 185.

The method 700 begins at step 710, where the controlling
program 190, under execution of the processor 185, sets the
Found_Stitcher variable configured within memory 180 to
None.

At checking step 715, the controlling program 190 exam-
ines the list of active stitcher objects configured within the
memory 180, and determines whether there are any objects
that have not yet been processed. If all objects in the list of
active stitcher objects have been processed, then the method
700 concludes.

Alternatively, if the controlling program 190 determines
at step 715, that there are unprocessed stitcher objects in the
list of active stitcher objects, then the method 700 proceeds
to fetching step 725. At step 725, the controlling program
190 fetches a next unprocessed stitcher object in the list of
active stitcher objects configured within the memory 190.

Then at compatibility checking step 730, if the controlling
program 190 determines that the bitmap fill of the stitcher
object fetched at step 725 is compatible with the candidate
fill, based on a set of pre-determined criteria, then the
method 700 proceeds to proximity determining step 735. For
example, fills are compatible if the fills are defined in the
same colour space and have the same bit depth. If the bitmap
fill of the stitcher object is not compatible with the candidate
fill, then the method 700 returns to step 715, as described
above.

In proximity determining step 735, the controlling pro-
gram 190 determines the proximity of the stitcher object and
candidate fill. In one implementation, the proximity of the
stitcher object to the candidate fill is measured by determin-
ing the distance between the bounding box of the candidate
fill and the bounding box of the stitcher object. The bound-
ing box for the candidate fill may either be determined from
a PDL object currently being processed, if the PDL object

10

15

20

25

30

35

40

45

50

55

60

65

14

contains a bounding box. Alternatively, the bounding box for
the candidate fill may be determined using the affine trans-
form of the candidate fill to transform the dimensions of the
candidate fill into a page space, and take the bounding box
of the transformed points. In one implementation, the
stitcher object and the candidate fill are considered to be in
proximity if the bounding box of the candidate fill is
completely contained within the bounding box of the stitcher
object. Otherwise, the stitcher object and the candidate fill
are considered to not be in proximity. Fills which are in
proximity will require less memory to combine than fills
which are not in proximity. For example, if four small
images, each at a corner of a page, were combined, the
number of pixels in the combined image would be equal to
the number of pixels on the page, a number much greater
than the number of pixels in the four images. This means that
if the images are combined, memory usage will increase.

In one implementation, the size of the bounding box of the
candidate fill can be changed adaptively according to the
characteristics of the page. Such adaptive and on-the-fly
modification of the size of the bounding region may be done
as the objects are obtained in obtaining step 530. Different
characteristics of a page can affect the size of the bounding
box. For example, as the number of objects at a particular
area on the page increases, thus increasing the complexity of
the particular area, the bounding region is slightly reduced
s0 as not to overlap with as many other bounding boxes of
other candidate fills on the page. The complexity of the
object and the fill associated with the object can also affect
the size of the bounding box. A complexity of a fill is
determined by the number of different colours and the type
of operators involved in the compositing stack. Thus, if the
number of colours in the fill exceeds a threshold, which can
be pre-determined to a fixed number, for example, the fill is
said to be complex. A complexity measure can also be
calculated that takes into account the number of objects in a
particular area on the page, the number of fills involved in
the area, the number of colours in each fill and the operators
involved in the fills, for example. Subsequently, the bound-
ing region of the fill is determined based on such a com-
plexity measure as the object is received. In particular, the
size of the bounding region may be affected by the com-
plexity measure. Determining the bounding region based on
a complexity measure reduces the complexity of the com-
bining process 655.

If the controlling program 190 determines at step 735 that
the stitcher object and the candidate fill are not in proximity,
then the method 700 returns to step 715, as described above.
If the stitcher object and the candidate fill are in proximity,
then the method 700 proceeds to overlap determining step
740.

At step 740, if the controlling program 190 determines
that the stitcher object and the candidate fill overlap, then the
method 700 returns to step 715 as described above. Other-
wise, the method 700 concludes. In one implementation, at
step 740, the controlling program 190 determines if any data
is written during previous stitching operations into an area of
the stitcher object where the bounding box of the candidate
fill overlaps the bounding box of the stitcher object. If the
controlling program 190 determines that no information has
previously been written to the overlapping area, then the
stitcher object and the candidate fill are considered to be
non-overlapping. However, if information has previously
been written to the overlapping area, then the stitcher object
and the candidate fill are considered to be overlapping.

US 9,459,819 B2

15

At step 745, the Found_Stitcher variable configured
within the memory 190 is set to the stitcher object and the
method 700 concludes.

The method 800 of combining a candidate fill with a
stitcher object, as executed at step 655, will be described in
detail below with reference to FIG. 8. The method 800
begins at determining step 820, where the controlling pro-
gram 190 determines a set of stitcher object pixels in the area
of overlap between the stitcher object and the candidate fill.
All of the pixels in the area of overlap are “unprocessed’.

At checking step 830, if the controlling program 190
determines that there are unprocessed pixels remaining in
the set of pixels determined in step 820, then the method 800
proceeds to step 850. Otherwise, if all pixels in the set of
pixels determined in step 820 have been processed, then the
method 800 concludes.

At fetching step 850, the controlling program 190, under
execution of the processor 185, fetches the next unprocessed
pixel. Then at determining step 860, the controlling program
190 determines the pixel colour value of the candidate fill
corresponding to the location of the fetched pixel. For a
bitmap fill, at step 860, the controlling program 190 per-
forms an affine transform between the unprocessed pixel and
the source bitmap space of the candidate fill to obtain a
source location. The colour value of the source bitmap at that
source location may then be determined.

At copying step 870, the colour value determined in step
860 is copied into the bitmap fill of the stitcher object at the
unprocessed pixel location. The method 800 then proceeds
to marking step 880, where the controlling program 190
marks the fetched pixel as “WRITTEN” and stores the pixel
in the memory 180. Processing then returns to step 830 as
described above.

Referring once again to FIG. 2, once the display list (or
first intermediate format page representation 250) has been
created, the display list may be transformed 230 into a tiled
fillmap representation 260. FIG. 9 shows a tiled fillmap
representation 910 of the example page 310 of FIG. 3. In the
example of FIG. 9, fillmap tile 920 is at position (1, 2)
expressed in (column, row) form. The contents of fillmap tile
920 are shown expanded on the right hand side of FIG. 9.
Four regions 930, 940, 950 and 960 in fillmap tile 920
reference fill compositing sequences with indices one, two,
three, and four, respectively.

FIG. 10 shows a table of fill compositing sequences 1010
and corresponding level information 1020, 1030 and 1040
for the tiled fillmap 910. Level Info #1 1020 contains
rendering information corresponding to the opaque diamond
object 320 of FIG. 3. Level Info #1 1020 references the
linear blend fill 415 and the compositing operator ATOP 420.
Level Info #2 1030 contains the rendering information
corresponding to the opaque low resolution source bitmap
object 330. Level Info #2 1030 references the low-resolution
bitmap source fill 435, and has the compositing operator
OVER 440. Level Info #3 1040 contains the rendering
information corresponding to the semi-transparent flat
object 340. Level Info #3 1040 references a flat grey source
fill 455, and has the compositing operator OVER 460.

If two objects reference identical fills and the same
compositing operator, the two fills are able to reference the
same level information. Two objects which reference the
same stitcher fill can, if the fills have the same compositing
information, reference the same identical level information.
Any regions of the tiled fillmap information that are pro-
duced by two such objects alone, without overlap with other
objects, will reference the same fill compositing sequence.

10

15

20

25

30

35

40

45

50

55

60

65

16

The methods described above will now be further
described by way of example with reference to FIGS. 11 to
15. FIG. 11 shows an example PDL page 1110. The page
1110 contains three PDL objects—a bottom-most object
1120 which is an opaque bitmap, where the source bitmap is
an image of a face. The page 1110 also contains a second
object 1130 which is an opaque bitmap, where the source
bitmap is an image of a triangle. The page 1110 also contains
a third object which is an opaque bitmap 1140, where the
source bitmap is an image of a circle.

A tiled fillmap representation 1210 of the example page
1110 when processed without fill combination is shown in
FIG. 12. Fillmap tile 1220 is at position (2, 2) expressed in
(column, row) form. The contents of fillmap tile 1220 are
shown expanded on the right hand side of FIG. 12. As seen
in FIG. 12, the four regions 1230, 1240, 1250 and 1260 in
fillmap tile 1220 reference the fill compositing sequences
with indices one, two, three, and four respectively.

FIG. 13 shows the table of fill compositing sequences
1310 and corresponding level information 1320, 1330, 1340
for the tiled fillmap 1210. Level Info #1320 contains the
rendering information corresponding to the object referenc-
ing the face bitmap 1120. Level Info #2 1330 contains the
rendering information corresponding to the object referenc-
ing the triangle bitmap 1130. Level Info #3 1340 contains
the rendering information corresponding to the object 1140
referencing the circle bitmap.

When an exemplary fill combination process is performed
on the example page of FIG. 11, the activation threshold is
considered to be zero (0), and the dimensions of each source
bitmap are less than a maximum allowable for stitching. All
of'the bitmaps of FIG. 11 have the same colour space and bit
depth. The page 1110 may be processed in accordance with
the method 500 in order to generate an intermediate page
representation in the form of a display list 1500 as shown in
FIG. 15. The method 500 begins by initializing the stitching
parameters as described above with reference to step 515.
The list of active stitcher objects configured within memory
180 is set to None, the fill combination active flag is cleared,
and the activation count and the deactivation count are set to
zero (0).

The PDL object referencing the face bitmap 1120 is
processed first in accordance with the method 500, and is
examined to determine if the face bitmap is suitable for
stitching (as at step 610 of the method 600). The dimensions
of the face bitmap corresponding to the object 1120 are less
than the maximum allowed for stitching, so the object 1120
is considered suitable for stitching. The activation count
parameter is incremented (as at step 625), and as the
activation count parameter is larger than zero (0), the fill
combination active flag configured within memory 180 is set
(as at step 640). As the list of active stitcher objects is empty,
no suitable stitcher object is determined (as at step 645 of the
method 600). Processing of the object 1120 continues and
the deactivation count is incremented (as at step 665).
However, the deactivation threshold will not be exceeded (as
at step 670), and so a new stitcher object is created (as at step
680) and added to the list of active stitcher objects config-
ured within the memory 180. The stitcher object will here-
after be denominated “stitcher object X”.

The bitmap Fill colour space and bit depth of stitcher
object X are set to the colour space and bit depth of the face
bitmap corresponding to the object 1120. The face bitmap is
then combined with the bitmap fill of the stitcher object X
(as at step 655 of the method 600). FIG. 14A shows the

US 9,459,819 B2

17
bitmap data 1410 for the stitcher object X and the pixels
1420 in stitcher object X that have been marked as “WRIT-
TEN”.

In accordance with the example, the next object to be
processed is the PDL object 1130 referencing the triangle
bitmap. The dimensions of the triangle bitmap are less than
the maximum allowed for stitching, so the triangle bitmap is
considered suitable for stitching (as per step 610 of the
method 600). As the fill activation flag is set, processing
proceeds directly to determine a suitable stitcher object from
the list of active stitcher objects configured within the
memory 180.

The triangle bitmap object 1130 is found to be compatible
with stitcher object X (as at step 730). The triangle bitmap
is wholly contained within the bounding box of stitcher
object X which may be determined at step 735, since the
triangle bitmap object 1130 does not overlap any pixels in
stitcher object X marked as dirty as determined in step 740.
Therefore, stitcher object X is selected as the stitcher object
to use for combination.

The triangle bitmap object 1130 is then combined with the
bitmap fill stitcher object X as at step 655. FIG. 14B shows
the state of the bitmap data 1430 for the stitcher object X.
FIG. 14B also shows the pixels 1440 in stitcher object X that
have been marked as dirty after processing the object
referencing the triangle bitmap object 1130.

The next object to be processed is the object 1140
referencing the circle bitmap. The dimensions of the circle
bitmap object 1140 are less than the maximum allowed for
stitching, so the object 1140 is considered suitable for
stitching (as at step 610 of the method 600). As the fill
activation flag is set, processing proceeds directly to deter-
mine a suitable stitcher object from the list of active stitcher
objects as at step 650). The circle bitmap object 1140 is
determined to be compatible with stitcher object X (as at
step 730), as the circle bitmap object 1140 is wholly con-
tained within the bounding box of the stitcher object X (as
determined in Step 735). However, the circle bitmap object
1140 overlaps pixels in stitcher object X marked as dirty (as
determined in step 740). Therefore, the stitcher object X is
not selected, and no compatible stitcher object is deter-
mined. The deactivation count parameter configured within
the memory 180 is incremented (as at step 665), and the
deactivation threshold parameter is determined to have been
exceeded (as at step 670). The fill combination active flag
configured within the memory 180 is therefore cleared, and
the activation and deactivation counts are set to zero (0) as
at step 675.

FIG. 15 shows the display list 1500 resulting from pro-
cessing the page 1110 from FIG. 11 in accordance with the
method 500. The Display List Object Entry 1 1505 corre-
sponds to the first object 1120, and references the square
shape path 1510, references the bitmap fill 1515 from the
stitcher object X and references the compositing operator
OVER 1520.

Display List Object Entry 2 1525 corresponds to the
second object 1130, and references a square path 1530,
references the bitmap fill 1515 from stitcher object X and
references the compositing operator OVER 1535.

Display List Object Entry 3 1540 corresponds to the third
object 1140 and references a square path 1545, references
the circle bitmap fill 1550 from the third object 1140 and
references the compositing operator OVER 1555. As seen in
FIG. 15, both Display List Objects 1 (1505) and 2 (1525)
refer to the same fill information 1515.

10

15

20

25

30

40

45

50

55

60

65

18

A tiled fillmap representation 1610 of the example page
1110 is shown in FIG. 16. Fillmap tile 1620 is at position (2,
2) expressed in (column, row) form. The contents of fillmap
tile 1620 are shown expanded on the right hand side of FIG.
16. As seen in FIG. 16, the four regions 1630, 1640, 1650
and 1660 in fillmap tile 1620 reference the fill compositing
sequences with indices one, two, one, and three respectively.

FIG. 17 shows the table of fill compositing sequences
1710 and corresponding level information 1720, 1730 for
the tiled fillmap 1610. Level Info #1 1720 contains the
rendering information corresponding to both the object
referencing the face bitmap 1120 and the object referencing
the triangle bitmap 1130. The Level Info #1 1720 references
the bitmap fill 1515 for the stitcher object X and the
compositing operator OVER 1520. Level Info #2 1730
contains the rendering information corresponding to the
object 1140 referencing the circle bitmap. The Level Info #2
references the circle bitmap 1550, and has the compositing
operator OVER 1555.

Comparing the table of fill compositing sequences 1310
with the table of fill compositing sequences 1710, it can be
seen that implementing the fill combination method for the
example page 1110 has reduced the number of fill compos-
iting sequences from four to three. It can also be seen that
the total number of level information data has reduced from
three (1320, 1330, 1340) to two (1720, 1730). This means
that the total memory usage required by the intermediate
tiled fillmap has been reduced.

FIG. 18 is a flow diagram showing a method 1800 of
associating an shared intermediate fill with a plurality of
objects, each of the objects being associated with a fill. The
method 1800 may be implemented as one or more software
code modules of the controlling program 190 resident in the
memory 180 and being controlled in its execution by the
processor 185. As described above, each of the objects may
be a page description language (PDL) object of a page such
as the page 310. In this instance, the controlling program 190
receives the description of the page 310 from the software
application 133 and may store the description in memory
180. Objects in the page description are placed into a first
shared intermediate format page representation in the form
of a display list, as described above, configured within the
memory 180. Each object in the display list references fill
data, path data and compositing instructions. As also
described above, in one implementation, the controlling
program 190 may process the page description language
objects to determine if any of fills may be combined into an
shared intermediate fill. Such an intermediate fill is a fill that
is shared by a plurality of objects with nearby fills. In other
words, if the fills of the objects are in proximity to one
another, an intermediate fill is created to replace the fills of
several objects to reduce the resources needed compared to
processing individual fills.

The method 1800 begins at step 1801, where the control-
ling program 190 performs the step of determining a bound-
ing region (or bounding box) of the shared intermediate fill
based on a fill of a first of the plurality of objects. As
described above, the bounding box for the fill may either be
determined from the object currently being processed, if the
object contains a bounding box. Alternatively, the bounding
box for the fill may be determined using the affine transform
of the fill to transform the dimensions of the fill into a page
space, and take the bounding box of the transformed points.

At the next step 1803, the controlling program 190
performs the step of associating the first object with the
shared intermediate fill. In one implementation, the control-
ling program may associate the first object with the inter-

US 9,459,819 B2

19
mediate fill by setting the fill property of the display list
entry corresponding to the PDL object currently being
processed. Then at the next step 1805, the controlling
program performs the step of receiving a second object. As
described above, the second object may be referred to as a
“stitcher object.”

The method 1800 continues at the next step 1807, where
the controlling program 190 performs the step of updating
the shared intermediate fill based on a fill of the second
object if: (a) the fill of the second object is contained within
the bounding region; and (b) the fill of the second object is
non-overlapping with the fill of the first object. Finally, at
step 1809, the controlling program 190 performs the step of
associating the second object with the updated shared inter-
mediate fill. The controlling program 190 may update the
shared intermediate fill at step 1807 and associate the second
object with the shared intermediate fill, in accordance with
the method 700 and method 800, as described above with
reference to FIGS. 7 and 8.

In an alternative implementation of the methods described
above, the bounding box of the stitcher object may be
initially set to the bounding box of the first bitmap fill
combined with the stitcher object. A candidate fill and the
stitcher object are determined to be in proximity if the
distance between the bounding box of the candidate fill and
the bounding box of the stitcher object is less than a
predetermined minimum distance. When the candidate fill is
combined with the stitcher object, the bounding box of the
stitcher object is enlarged to encompass both the original
bounding box of the stitcher object, and the bounding box of
the candidate fill.

As an example FIG. 19A and FIG. 19B show that the
bounding box of the stitcher object 1910 and the candidate
fill 1920 do not overlap. The distance between the bounding
box of the stitcher object 1910 and the candidate fill 1920 as
indicated by the arrow 1930 is, less than the predetermined
minimum distance. In this case, the candidate fill is com-
bined with the stitcher object, and the bounding box of the
stitcher object is updated to a new bounding box 1940 which
encompasses both the bounding box 1910 of the original
stitcher object and the bounding box 1920 of the candidate
fill.

In another alternative implementation, stitching may be
used to combine flat fills. In this case, the bounding box of
the flat fill may be determined from the bounding box of a
PDL object. Flat fills may then be combined with the stitcher
object by copying the flat fill colour to the stitcher objects
copied into the bitmap fill for the stitcher objects.

INDUSTRIAL APPLICABILITY

The arrangements described are applicable to the com-
puter and data processing industries and particularly for the
image processing.

The foregoing describes only some embodiments of the
present invention, and modifications and/or changes can be
made thereto without departing from the scope and spirit of
the invention, the embodiments being illustrative and not
restrictive.

In the context of this specification, the word “comprising”
means “including principally but not necessarily solely” or
“having” or “including”, and not “consisting only of”.
Variations of the word “comprising”, such as “comprise”
and “comprises” have correspondingly varied meanings.

This application claims priority from Australian Patent
Application No. 2010-241218 filed Nov. 3, 2010, which is
hereby incorporated by reference herein in its entirety.

10

15

20

25

30

35

40

45

50

55

60

65

20

The claims defining the invention are as follows:

1. Amethod of rendering a plurality of objects, the method
comprising:

receiving a display list representation comprising a first

display list object associated with a first fill and a first
path, and a second display list object associated with a
second fill and a second path;

determining a bounding region of a shared fill based on

the first fill, wherein a size of the bounding region is
affected by a complexity measure of at least one of the
first object and the first fill;

associating the first display list object with the shared fill

by setting the first fill of the first display list object to
the shared fill;

updating the shared fill using the second fill in response to

determining if the second fill is compatible with the
first fill and the second fill is: (a) contained within the
bounding region, and (b) non-overlapping with the first
fill;

associating the second display list object with the updated

shared fill, the updated shared fill being shared, in the
display list representation, by the first display list object
and the second display list object; and

rendering the first object and the second object using the

first path and the second path associated with the
updated shared fill.

2. The method according to claim 1, wherein the shared
fill is updated using the second fill to reduce memory usage
by the display list representation.

3. The method according to claim 1, wherein the shared
fill is updated using the second fill to reduce a number of
transformations required to render the display list represen-
tation.

4. The method according to claim 1, further comprising
determining whether the second fill is suitable for updating
the shared fill, wherein the second fill is suitable for updating
the shared fill if a size associated with the second fill is
below a predetermined threshold.

5. The method according to claim 4, further comprising:

incrementing an activation count in response to determin-

ing that the second fill is suitable for updating the
shared fill; and

if the activation count exceeds a predetermined activation

threshold, associating a flag with at least the second
display list object to update the shared fill.

6. The method according to claim 5, wherein the prede-
termined activation threshold is exceeded if the ratio of the
activation count to the total number of processed objects is
above the predetermined activation threshold.

7. The method according to claim 5, further comprising:

incrementing a deactivation count if the second fill is not

compatible with the first fill; and

if the deactivation count exceeds a predetermined deac-

tivation threshold, deactivating at least the second fill.

8. The method according to claim 7, wherein the prede-
termined deactivation threshold is exceeded if the ratio of
the deactivation count to the activation count is above the
predetermined deactivation threshold.

9. The method according to claim 1, wherein the second
fill is compatible with the first fill if the second fill and the
first fill are defined in the same colour space.

10. The method according to claim 1, wherein the second
fill is compatible with the first fill if the second fill and the
first fill have the same bit depth.

11. The method according to claim 1, wherein the size of
the bounding region is based on a number of objects within
an associated area on a page.

US 9,459,819 B2

21

12. The method according to claim 1, wherein the com-
plexity measure of the first fill is determined based on a
plurality of colours and a type of operators associated with
the first fill.

13. A method of rendering a plurality of objects, the
method comprising:

receiving a display list representation comprising a first
display list object associated with a first fill and a first
path, and a second display list object associated with a
second fill and a second path;

determining a bounding region of the shared fill based on
the first fill, wherein a size of the bounding region is
affected by a complexity measure of at least one of the
first object and the first fill;

associating the first display list object with a shared fill by
setting the first fill of the first display list object to the
shared fill;

updating the shared fill using the second fill in response to
determining if the second fill is compatible with the
first fill and the second fill is: (a) within a predeter-
mined distance of the first fill, and (b) non-overlapping
with the first fill;

associating the second display list object with the updated
shared fill, the updated shared fill being shared, in the
display list representation, by the first display list object
and the second display list object; and

rendering the first object and the second object using the
first path and the second path associated with the
updated shared fill.

14. A system for rendering a plurality of objects, the

system comprising:
a memory for storing data and a computer program;
a processor for executing said computer program, said
computer program comprising instructions for:
receiving a display list representation comprising a first
display list object associated with a first fill and a first
path, and a second display list object associated with
a second fill and a second path;

determining a bounding region of a shared fill based on
the first fill, wherein a size of the bounding region is
affected by a complexity measure of at least one of
the first object and the first fill;

associating the first display list object with the shared
fill by setting the first fill of the first display list
object to the shared fill;

updating the shared fill using the second fill in response
to determining if the second fill is compatible with
the first fill and the second fill is: (a) contained within
the bounding region, and (b) non-overlapping with
the first fill;

associating the second display list object with the
updated shared fill, the updated shared fill being
shared, in the display list representation, by the first
display list object and the second display list object,
and

a printer receiving the updated shared fill to render the
first and the second objects using the first path and the
second path associated with the updated shared fill.

15. A system for rendering a plurality of objects, the
system comprising:

a memory for storing data and a computer program;

a processor for executing said computer program, said
computer program comprising instructions for:
receiving a display list representation comprising a first

display list object associated with a first fill and a first
path, and a second display list object associated with
a second fill and a second path;

15

20

25

30

35

40

45

50

55

60

65

22

determining a bounding region of the shared fill based
on the first fill, wherein a size of the bounding region
is affected by a complexity measure of at least one of
the first object and the first fill;

associating the first display list object with a shared fill
by setting the first fill of the first display list object
to the shared fill;

updating the shared fill using the second fill in response
to determining if the second fill is compatible with
the first fill and the second fill is: (a) within a
predetermined distance of the first fill, and (b) non-
overlapping with the first fill;

associating the display list object with the updated
shared fill, said updated shared fill being shared, in
the display list representation, by the first display list
object and the second display list object, and

a printer receiving the updated shared fill to render the

first and the second objects using the first path and the
second path associated with the updated shared fill.

16. A computer readable non-transitory storage medium
having recorded therein a computer program for rendering a
plurality of objects, the computer program having instruc-
tions that, when executed by a processor, cause the processor
to perform operations comprising:

determining a bounding region of the shared fill based on

the first fill, wherein a size of the bounding region is
affected by a complexity measure of at least one of the
first object and the first fill;

associating the first display list object with a shared fill by

setting the first fill of the first display list object to the
shared fill;
updating the shared fill using the second fill in response to
determining if the second fill is compatible with the
first fill and the second fill is: (a) contained within the
bounding region, and (b) non-overlapping with the fill;

associating the second display list object with the updated
shared fill, the updated shared fill being shared, in the
display list representation, by the first display list object
and the second display list object; and

rendering the first object and the second object using the

first path and the second path associated with the
updated shared fill.

17. A computer readable non-transitory storage medium
having recorded therein a computer program for associating
a shared fill with a plurality of objects, each of said objects
being associated with a fill, said computer program having
instructions that, when executed by a processor, cause the
processor to perform operations comprising:

receiving a display list representation comprising a first

display list object associated with a first fill and a first
path, and a second display list object associated with a
second fill and a second path;

determining a bounding region of the shared fill based on

the first fill, wherein a size of the bounding region is
affected by a complexity measure of at least one of the
first object and the first fill;

associating the first display list object with the shared fill

by setting fill property of the first display list object to
the shared fill;

updating the shared fill using the second fill in response to

determining if the second fill is compatible with the
first fill and the second fill is: (a) within a predeter-
mined distance of the first fill, and (b) non-overlapping
with the first fill;

associating the second display list object with the updated

shared fill, said updated shared fill being shared, in the

US 9,459,819 B2

23

display list representation, by the first display list object
and the second display list object; and

rendering the first object and the second object using the
first path and the second path associated with the
updated shared fill.

18. A method for rendering a plurality of objects, the

method comprising:

receiving a display list representation comprising a first
display list object associated with a first fill and a first
path, and a second display list object associated with a
second fill and a second path;

determining a bounding region of a shared fill based on
the first fill;

associating the first display list object with the shared fill
by setting the first fill of the first display list object to
the shared fill;

in response to determining if the second fill is compatible
with the first fill and the second fill is: (a) contained
within the bounding region, and (b) non-overlapping
with the first fill, updating the shared fill using the
second fill to reduce memory usage by the display list
representation;

associating the second display list object with the updated
shared fill to reduce memory usage by the display list
representation, the updated shared fill being shared by
the first display list object and the second display list
object; and

rendering the first object and the second object using the
first path and the second path associated with the
updated shared fill.

#* #* #* #* #*

10

15

20

25

30

24

